23 research outputs found

    Learning mutational graphs of individual tumour evolution from single-cell and multi-region sequencing data

    Full text link
    Background. A large number of algorithms is being developed to reconstruct evolutionary models of individual tumours from genome sequencing data. Most methods can analyze multiple samples collected either through bulk multi-region sequencing experiments or the sequencing of individual cancer cells. However, rarely the same method can support both data types. Results. We introduce TRaIT, a computational framework to infer mutational graphs that model the accumulation of multiple types of somatic alterations driving tumour evolution. Compared to other tools, TRaIT supports multi-region and single-cell sequencing data within the same statistical framework, and delivers expressive models that capture many complex evolutionary phenomena. TRaIT improves accuracy, robustness to data-specific errors and computational complexity compared to competing methods. Conclusions. We show that the application of TRaIT to single-cell and multi-region cancer datasets can produce accurate and reliable models of single-tumour evolution, quantify the extent of intra-tumour heterogeneity and generate new testable experimental hypotheses

    International Coordination of Long-Term Ocean Biology Time Series Derived from Satellite Ocean Color Data

    Get PDF
    [ABSTRACT] In this paper, we will describe plans to coordinate the initial development of long-term ocean biology time series derived from global ocean color observations acquired by the United States, Japan and Europe, Specifically, we have been commissioned by the International Ocean Color Coordinating Group (IOCCG) to coordinate the development of merged products derived from the OCTS, SeaWiFS, MODIS, MERIS and GLI imagers. Each of these missions will have been launched by the year 2002 and will have produced global ocean color data products. Our goal is to develop and document the procedures to be used by each space agency (NASA, NASDA, and ESA) to merge chlorophyll, primary productivity, and other products from these missions. This coordination is required to initiate the production of long-term ocean biology time series which will be continued operationally beyond 2002. The purpose of the time series is to monitor interannual to decadal-scale variability in oceanic primary productivity and to study the effects of environmental change on upper ocean biogeochemical processes

    Metagenomic Taxonomy-Guided Database-Searching Strategy for Improving Metaproteomic Analysis

    No full text
    Metaproteomics provides a direct measure of the functional information by investigating all proteins expressed by a microbiota. However, due to the complexity and heterogeneity of microbial communities, it is very hard to construct a sequence database suitable for a metaproteomic study. Using a public database, researchers might not be able to identify proteins from poorly characterized microbial species, while a sequencing-based metagenomic database may not provide adequate coverage for all potentially expressed protein sequences. To address this challenge, we propose a metagenomic taxonomy-guided database-search strategy (MT), in which a merged database is employed, consisting of both taxonomy-guided reference protein sequences from public databases and proteins from metagenome assembly. By applying our MT strategy to a mock microbial mixture, about two times as many peptides were detected as with the metagenomic database only. According to the evaluation of the reliability of taxonomic attribution, the rate of misassignments was comparable to that obtained using an a priori matched database. We also evaluated the MT strategy with a human gut microbial sample, and we found 1.7 times as many peptides as using a standard metagenomic database. In conclusion, our MT strategy allows the construction of databases able to provide high sensitivity and precision in peptide identification in metaproteomic studies, enabling the detection of proteins from poorly characterized species within the microbiota

    Additional file 3: of A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions

    No full text
    Graphical representation (box-plot) of TKTL1 immunohistochemical evaluation. Immunoreactivity scores (IRS) of normal mammary glands (n = 6), ductal hyperplasias (n = 3), benign tumors (n = 11) and carcinomas (n = 17), with statistical differences between lesions. Different letters (a, b, c, d) indicate significant differences (P < 0.05), red line (median values), Kruskal-Wallis ANOVA followed by Dunn’s post hoc test. (TIF 970 kb

    Additional file 2: Figure S1. of Potential and active functions in the gut microbiota of a healthy human cohort

    No full text
    Principal component analysis plots related to taxonomic and functional features. MG data are in blue, while MP data are in red. Each dot (with different shape) represents a different human subject. (A) phyla; (B) genera; (C) KOGs; (D) KOG-phylum combinations. (PNG 2001 kb

    Unipept Desktop 2.0: Construction of Targeted Reference Protein Databases for Metaproteogenomics Analyses

    No full text
    Unipept Desktop 2.0 is the most recent iteration of the Unipept Desktop tool that adds support for the analysis of metaproteogenomics datasets. Unipept Desktop now supports the automatic construction of targeted protein reference databases that only contain proteins (originating from the UniProtKB resource) associated with a predetermined list of taxa. This improves both the taxonomic and functional resolution of a metaproteomic analysis and yields several technical advantages. By limiting the proteins present in a reference database, it is also possible to perform (meta)proteogenomics analyses. Since the protein reference database resides on the user’s local machine, they have complete control over the database used during an analysis. Data no longer need to be transmitted over the Internet, decreasing the time required for an analysis and better safeguarding privacy-sensitive data. As a proof of concept, we present a case study in which a human gut metaproteome dataset is analyzed with Unipept Desktop 2.0 using different targeted databases based on matched 16S rRNA gene sequencing data

    Unipept Desktop 2.0: Construction of Targeted Reference Protein Databases for Metaproteogenomics Analyses

    No full text
    Unipept Desktop 2.0 is the most recent iteration of the Unipept Desktop tool that adds support for the analysis of metaproteogenomics datasets. Unipept Desktop now supports the automatic construction of targeted protein reference databases that only contain proteins (originating from the UniProtKB resource) associated with a predetermined list of taxa. This improves both the taxonomic and functional resolution of a metaproteomic analysis and yields several technical advantages. By limiting the proteins present in a reference database, it is also possible to perform (meta)proteogenomics analyses. Since the protein reference database resides on the user’s local machine, they have complete control over the database used during an analysis. Data no longer need to be transmitted over the Internet, decreasing the time required for an analysis and better safeguarding privacy-sensitive data. As a proof of concept, we present a case study in which a human gut metaproteome dataset is analyzed with Unipept Desktop 2.0 using different targeted databases based on matched 16S rRNA gene sequencing data

    Comparison of metaproteomic data obtained with different databases.

    No full text
    <p>A) Number of peptide sequences (left) and peptide-spectrum matches (PSMs, right) identified in the 9MM using different sequence databases (FDR<1%). B) Left, Venn diagram illustrating the peptide distribution among four different DB classes. Center, Venn diagram illustrating the peptide distribution among all NCBI-, TrEMBL- and SwissProt-based DBs used in this study. Right, Venn diagram illustrating the peptide distribution among all DBs with generic microbial taxonomy (BFV), genus-specific taxonomy (G), and species-specific taxonomy (S).</p
    corecore